Micro-orifice single-phase flow at very high Reynolds number
نویسندگان
چکیده
منابع مشابه
Surface-sampled simulations of turbulent flow at high Reynolds number
Funding information European Commission Horizon 2020, Grant/Award Number: 671571; Engineering and Physical Sciences Research Council (EPSRC), Grant/Award Number: EP/L000261/1 Summary A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space-filling quasi-direct numerical simulations (QDNS), which sample the respon...
متن کاملThe critical layer in pipe flow at high Reynolds number.
We report the computation of a family of travelling wave solutions of pipe flow up to Re=75000. As in all lower branch solutions, streaks and rolls feature prominently in these solutions. For large Re, these solutions develop a critical layer away from the wall. Although the solutions are linearly unstable, the two unstable eigenvalues approach 0 as Re-->infinity at rates given by Re-0.41 and R...
متن کاملOlfactory search at high Reynolds number
Locating the source of odor in a turbulent environment-a common behavior for living organisms-is nontrivial because of the random nature of mixing. Here we analyze the statistical physics aspects of the problem and propose an efficient strategy for olfactory search that can work in turbulent plumes. The algorithm combines the maximum likelihood inference of the source position with an active se...
متن کاملMHD turbulence at high Reynolds number
Scientific context Magnetic fields are important dynamically in a variety of situations in geophysics and astrophysics. Numerous observations are appearing, e.g. thanks to remote sensing and in particular to the CLUSTER ensemble of 4 satellites, allowing for an estimation of fields and of their derivatives in the Solar Wind close environment. In the magnetohydrodynamic (MHD) approximation valid...
متن کاملPopulation dynamics at high Reynolds number.
We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasilocalization and a remarkable reduction in the carrying capacity. The statistical properties of the population density are investigated and quantified via...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Experimental Thermal and Fluid Science
سال: 2018
ISSN: 0894-1777
DOI: 10.1016/j.expthermflusci.2017.10.006